

VF-X100K676图像开发板

CONTENTS 目录

- 01 Xilinx FPGA开发板介绍
- 02 XC7A100T FPGA芯片介绍
- 03 VF-X100K676 开发板介绍
- 04 VF-X100K676 Demo资料介绍
- 05 更多图片展示

https://www.szovs.com

深圳市奥唯思科技有限公司

SHENZHEN OVS TECHONOGY CO.,LTD

深圳市奥唯思科技有限公司(深圳奥唯思/SZOVS)成立于2021年,公司位于深圳南山西丽,专注于**摄像头采集**与LCD图形显示,

FPGA ISP处理以及FPGA国产化方案,致力于为客户提供

可快速量产、高性价的工业、医疗解决方案。

Verilog HDL关键字

争做一流的FPGA图像方案供应商

资质荣誉

凭着FPGA行业十几年的技术积累,致力于一流的FPGA图像方案供应商,奥唯思帮客户快速方案落地,为**影石(insta360)、易灵思、高云、Lattice、思特威、中科院**等知名企业提供FPGA图像解决方案,得到了市场广泛的认可……

奥唯思,为FPGA图像而生.....

O 1 PART

Xilinx FPGA开发板介绍

FPGA开发板产品-赛灵思相关

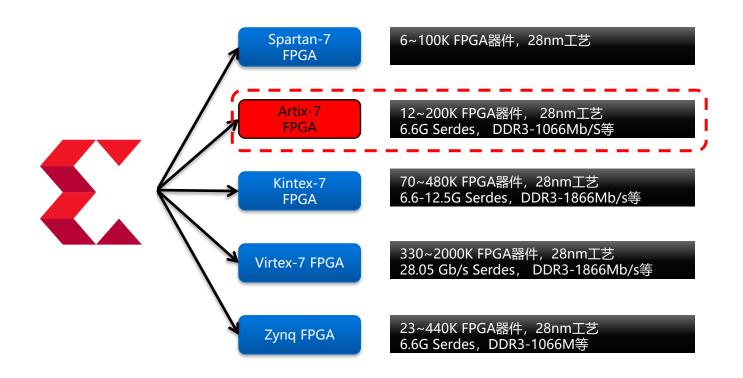
VF-X25K225 赛灵思<mark>S7</mark> FPGA图像开发板

VF-X100K676 赛灵思A7 FPGA图像开发板

VF-X70K676 赛灵思K7 FPGA图像开发板

VF-ZYNQ7020 赛灵思ZYNQ FPGA开发板

型号	系列	资源	存储	DVP 相机	MIPI 相机	图像 接口	通信接口	特性描述
VF-X25K255	Spartan7	25K	DDR3	√		HDMI, LVDS, RGB 子卡	UART USB2.0卡	配套《FPGA图像》1书 入门级25K FPGA开发板
VF-X100K676 VF-X200K676	Artix7	100K 200K	DDR3*2	√	√ 双目	HDMI, LVDS MIPI CSI, RGB子卡	UART PCIE2.0 SFP USB3.0 以太网	配套《FPGA图像》1书 进阶100/200K FPGA开发板
VF-X70K676	Kintex7	70K	DDR3*2	√ 双目		HDMI, LVDS RGB子卡	UART PCIE2.0 SFP	配套《FPGA图像》1书 进阶70K FPGA开发板
VF-ZYNQ7020	ZYNQ	85K	DDR3	V	√	RGB HDMI	UART 以太网	入门ZYNQ图像处理 完整的MIPI解决方案



型号	厂家	色彩	靶面	像素	分辨率	曝光	帧率	接口	镜头	焦距	特性
VS-SC233HGS	思特威	黑白	1/2.6	3.0um	1920*1080	全局	120	MIPI	M12	3.6mm	全局、高速、1080P
VS-SC130GS	思特威	黑白 彩色	1/2.7	4um	1280*1024	全局	240	DVP MIPI	M12	3.6mm	全局、高速、低照度
VS-SC2210	思特威	彩色	1/1.8	4um	1920*1080	卷帘	60	MIPI	M12	6mm	大靶面、低照度
VS-SC200AI	思特威	彩色	1/2.8	2.9um	1920*1080	卷帘	60	MIPI	M12	3.6mm	HDR, 低照度
VS-SC1336	思特威	彩色	1/3	3.75um	1280*720	卷帘	60	DVP	M12	4mm	低成本、720P
VS-AR0135	Aptina	黑白	1/3	3.75um	1280*1024	全局	60	DVP	M12	3.6mm	全局黑白、车规
VS-MT9V034	Micron	黑白	1/3	6um	752*480	全局	60	DVP	CS	4mm	全局、 <mark>850nm</mark> 敏感
VS-MT9M001	Micron	彩色	1/2	5.2um	1280*1024	卷帘	30	DVP	M12	8mm	大靶面、低成本

02 PART

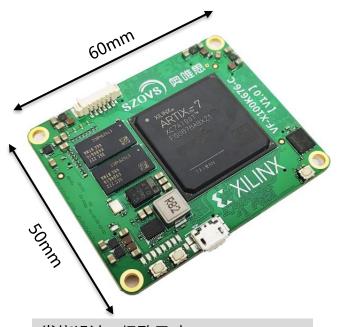
XC7A100T FPGA 芯片介绍

Artix-7 FPGAs

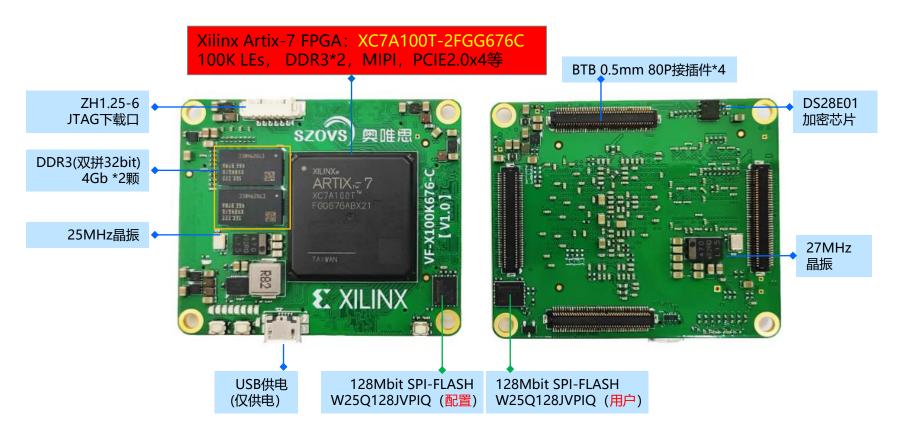
(1.0V, 0.95V, 0.9V)									
	Part Number	XC7A12T	XC7A15T	XC7A25T	XC7A35T	XC7A50T	XC7A75T	XC7A100T	XC7A200T
	Logic Cells	12,800	16,640	23,360	33,280	52,160	75,520	101,440	215,360
Logic Resources	Slices	2,000	2,600	3,650	5,200	8,150	11,800	15,850	33,650
Resources	CLB Flip-Flops	16,000	20,800	29,200	41,600	65,200	94,400	126,800	269,200
	Maximum Distributed RAM (Kb)	171	200	313	400	600	892	1,188	2,888
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	20	25	45	50	75	105	135	365
Resources	Total Block RAM (Kb)	720	900	1,620	1,800	2,700	3,780	4,860	13,140
Clock Resources	CMTs (1 MMCM + 1 PLL)	3	5	3	5	5	6	6	10
I/O Resources	Maximum Single-Ended I/O	150	250	150	250	250	300	300	500
i/O Resources	Maximum Differential I/O Pairs	72	120	72	120	120	144	144	240
	DSP Slices	40	45	80	90	120	180	240	740
	PCle® Gen2 ⁽¹⁾	1	1	1	1	1	1	1	1
Embedded Hard IP	Analog Mixed Signal (AMS) / XADC	1	1	1	1	1	1	1	1
Resources	Configuration AES / HMAC Blocks	1	1	1	1	1	1	1	1
	GTP Transceivers (6.6 Gb/s Max Rate) ⁽²⁾	2	4	4	4	4	8	8	16
	Commercial Temp (C)	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades	Extended Temp (E)	-2L, -3							
	Industrial Temp (I)	-1, -2, -1L							
	Dissessions Bell Bitch	-, -,	-, -,	_, _,	_, _,	-, -,	-, -,		_, _,

Transceiver Optimization at the Lowest Cost and Highest DSP Bandwidth

	Package ^{(3), (4)}	Dimensions (mm)	Ball Pitch (mm)	Available User I/O: 3.3V SelectIO™ HR I/O (GTP Transceivers)							
	CPG236	10 x 10	0.5		106 (2)		106 (2)	106 (2)			
	CPG238	10 x 10	0.5	112 (2)		112 (2)					
	CSG324	15 x 15	0.8		210 (0)		210 (0)	210 (0)	210 (0)	210 (0)	
	CSG325	15 x 15	0.8	150 (2)	150 (4)	150 (4)	150 (4)	150 (4)			
	FTG256	17 x 17	1.0		170 (0)		170 (0)	170 (0)	170 (0)	170 (0)	
	SBG484	19 x 19	0.8								285 (4)
Footprint	FGG484 ⁽⁵⁾	23 x 23	1.0		250 (4)		250 (4)	250 (4)	285 (4)	285 (4)	
Compatible	FBG484 ⁽⁵⁾	23 x 23	1.0								285 (4)
Footprint	FGG676 ⁽⁶⁾	27 x 27	1.0						300 (8)	300 (8)	
Compatible	FBG676 ⁽⁶⁾	27 x 27	1.0								400 (8)
	FFG1156	35 x 35	1.0								500 (16)


O3 PART

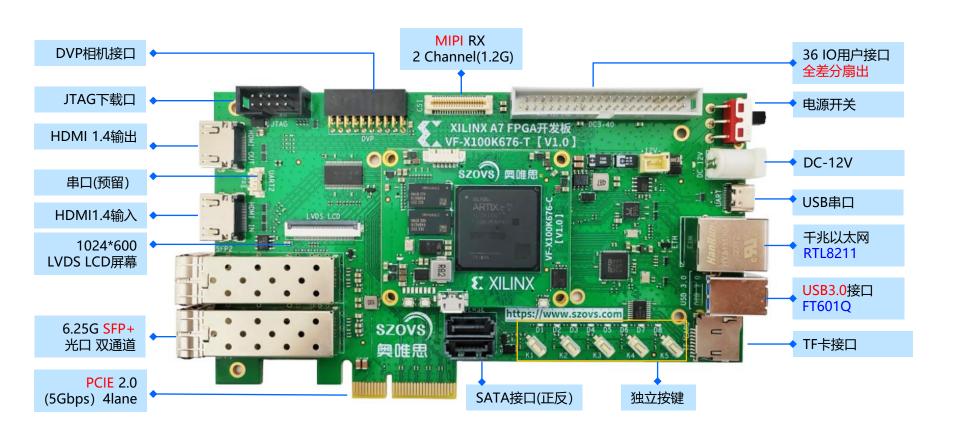
VF-X100K676 开发板介绍



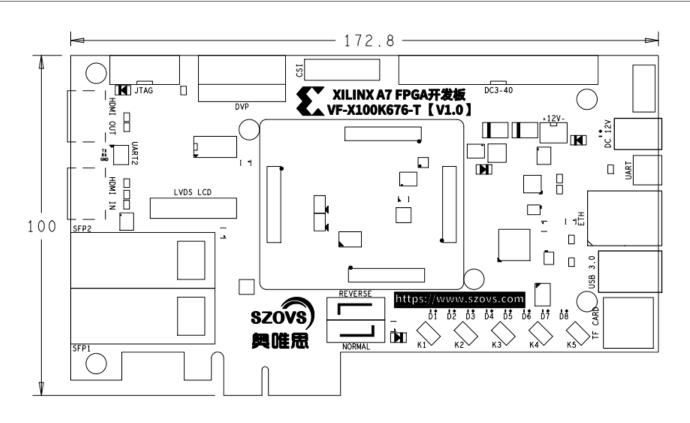
发烧设计,极致尺寸; 工匠品质,为FPGA而生

参数	描述
供应商	奥唯思 科技
核心板型号	VF-X100K676-C
FPGA厂家	Xilinx (赛灵思) Artix-7系列
FPGA型号	XC7A100T-2FGG676
FPGA资源	100K 逻辑单元, 6.25G Serdes, DDR3 IP, PCIE2.0
DDR3存储	4G 16bit*2颗 DDR3: K4B4G1646E
PCBA尺寸	60mm *50mm
PCB工艺	8层 1.6mm 沉金 亚黑
板载FLASH	128Mbit SPI FLASH: W25Q128JVPIQ
用户FLASH	128Mbit SPI FLASH: W25Q128JVPIQ
板子外设	2个用户按键,1个USB供电口,8个测试LED
其他接口	板载ZH1.25-6 JTAG下载口
B2B接口	4个0.5mm双排80P B2B接插件 (母座*4)
供电	集成USB Mini供电口 B2B接插件输入5V DC

参数 描述 供应商 奥唯思 科技 核心板型号 VF-X100K676 FPGA厂家 Xilinx (赛灵思) Artix-7系列 FPGA型号 XC7A100T-2FGG676C FPGA资源 100K 逻辑单元, 6.25G Serdes, DDR3 IP, PCIE2.0 千兆太网接口 基于RTL8211 PHY, 支持100/1000M以太网通信 USB3.0接口 基于FTDI的FT601Q, 支持USB3.0/2.0通信 基于FPGA Serdes,支持2路6.25Gbps 光口通信 SFP光口 HDMI 输入 基于FPGA TMDS, 最高支持1080P60 HDMI 输出 基于FPGA TMDS, 最高支持1080P60 DVP相机接口 支持奥唯思全系列DVP相机,包括OV5640、MT9V034、 AR0135、SC130GS等3.3V DVP模组 MIPI RX接口 支持奥唯思全系列MIPI相机,包括SC130GS、SC2210、 SC200AI、SC235HGS等MIPI模组


终极FPGA图像图像开发板

其他特色


平台包含了UART、SPI、I2C、TF Card 、GPIO(LED/KEY) 等RSIC-V必备的外设,无缝支持 RISC-V FPGA原型验证平台

O4 PART

FPGA开发板 Demo资料介绍

FPGA开发板 基础Demo介绍

序号	工程名	设计描述
1	01_LED_8bit_Test	LED流水灯测试实验(核心板)
2	02_KEY_2bit_Test	独立按键测试实验(核心板)
3	03_FPGA_UART_Test_Bottom	UART串口测试实验
4	04_FPGA_DDR3_Test	DDR3读写测试实验(核心板)
5	05_RGBLCD_Test_800480	800*480 RGBLCD显示实验
6	06_LVDS_LCD_Test_1024600	1024*600 LVDS LCD显示实验
7	07_HDMI_Disp_Test_720P	1280*720@60 HDMI显示实验
8	08_HDMI_Disp_Test_1080P	1920*1080@60 HDMI显示实验
9	09_FT601_USBSS_Test	FT601 USB3.0通路测试实验
10	10_RGMII_Eth_Test	RGMII 读写测试实验
11	11_PCle_Test	PCIE2.0 Linkup测试实验
12	12_SFP_Test	6.25Gbps SFP回环测试实验

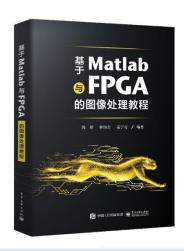
FPGA开发板 摄像头Demo

序号	工程名	设计描述
1	01-1_CMOS_AR0135_HDMI_720P	基于AR0135 DVP相机的HDMI屏720P成像案例
2	01-2_CMOS_AR0135_RGBLCD_800480	基于AR0135 DVP相机的RGB屏(800*480)成像案例
3	02-1_CMOS_SC130GS_Gray_HDMI_720P	基于SC130S MIPI 4lane相机的HDMI屏720P成像案例
4	02-2_CMOS_SC130GS_Gray_LVDS_1024600	基于SC130S MIPI 4lane相机的LVDS屏(1024*600)成像案例
5	02-3_CMOS_SC130GS_Gray_RGBLCD_800480	基于SC130S MIPI 4lane相机的RGB屏(800*480)成像案例
6	03-1_CMOS_SC2210_HDMI_1080P	基于SC2210 MIPI 4lane相机的HDMI屏1080P成像案例
7	03-2_CMOS_SC2210_LVDS_1024600	基于SC2210 MIPI 4lane相机的LVDS屏(1024*600)成像案例
8	03-3_CMOS_SC2210_RGB_800480	基于SC2210 MIPI 4lane相机的MIPI DSI屏(1024*600)成像案例
9	04-1_CMOS_SC233HGS_HDMI_1080P	基于SC233HGS MIPI 4lane相机的HDMI屏1080P成像案例
10	04-2_CMOS_SC233HGS_LVDS_1024600	基于SC233HGS MIPI 4lane相机的LVDS屏(1024*600)成像案例
11	04-3_CMOS_SC233HGS_RGB_800480	基于SC233HGS MIPI 4lane相机的MIPI DSI屏(1024*600)成像案例

备注: DVP与LVDS不能同时用,因此AR0135没有LVDS LCD工程

FPGA开发板 图像Demo介绍 (AR0135+SC130GS黑白)

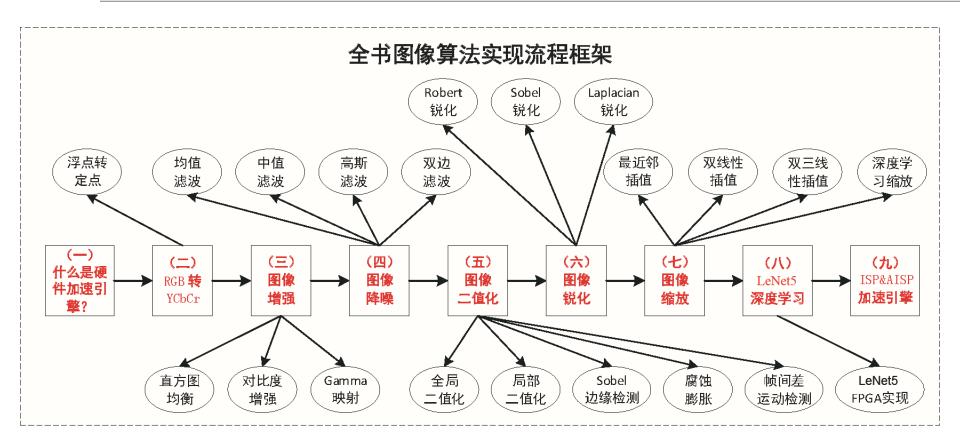
序号	工程名	设计描述
1	3.1_Histgram_EQ	直方图均衡算法FPGA加速
2	3.2_Image_Constrast	对比度增强算法FPGA加速
3	3.3_Gamma_Mapping	Gamma映射算法FPGA加速
4	4.1_Avg_Filter	均值滤波算法FPGA加速
5	4.2_Med_Filter	中值滤波算法FPGA加速
6	4.3_Gaussian_Filter	高斯滤波算法FPGA加速
7	4.4_Bilateral_Filter	双边滤波算法FPGA加速
8	5.3_Region_Binarization	局部阈值二值化算法FPGA加速
9	5.4_Sobel_Edge_Detector	Sobel边缘检测算法FPGA加速
10	5.5_Bin_Erosion_Dilation	腐蚀、膨胀算法FPGA加速
11	5.6_Frame_Difference_Test	基于帧间差的运动追踪算法FPGA加速
12	6.2_Robert_Sharpen	基于Robert算子锐化算法FPGA加速
13	6.3_Sobel_Sharpen	基于Sobel算子锐化算法的FPGA加速
14	6.4_Laplacian_Sharpen	基于Laplacian算子锐化算法的FPGA加速
15	7.1_Nearest_Interpolation	最近邻域插值缩放算法的FPGA加速
16	7.2_Bilinear_Interpolation	双线性插值缩放算法的FPGA加速
17	8.1_Lenet_Test	Lenet5手写数字识别



配套《基于MATLAB与FPGA的图像处理》

目录

- 第1章 什么是硬件加速引擎
- 第2章 RGB转YCbCr算法介绍及MATLAB与FPGA实现
- 第3章 常用图像增强算法介绍及MATLAB与FPGA实现
- 第4章 常用图像降噪算法介绍及MATLAB与FPGA实现
- 第5章 常用图像二值化算法介绍及MATLAB与FPGA实现
- 第6章 常用图像锐化算法介绍及MATLAB与FPGA实现
- 第7章 常用图像缩放算法介绍及MATLAB与FPGA实现
- 第8章 基于LeNet5的深度学习算法介绍及MATLAB与FPGA实现
- 第9章 传统ISP及AISP的图像处理硬件加速引擎介绍



- 国内第一本基于MATLAB/FPGA的图像处理教程
- FPGA图像算法硬件加速进阶(中级学者)
- **2024已累积销售近万本**,受广泛好评
- 目前已经被多家高校选定,作为大学教材
- Bilibili连载视频教程(基于本FPGA开发板)

FPGA终点: 图像算法开发

FPGA开发板 套餐介绍

可选

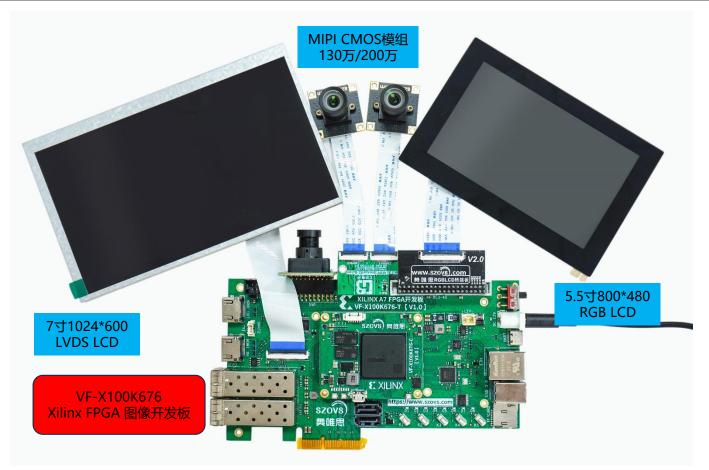
可选

1024*600 LVDS/RGB液晶屏

800*480 RGB IPS触摸屏

AR0135 130万全局黑白

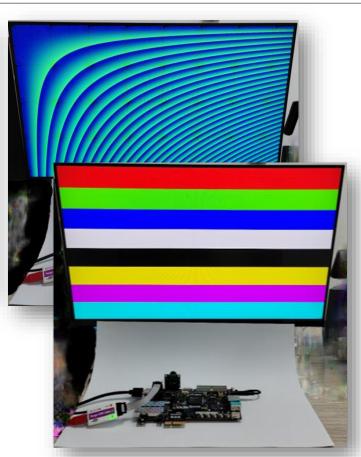
SC130GS 130万全局黑白


SC2210 200万卷帘彩色

SC233HGS 200万全局黑白

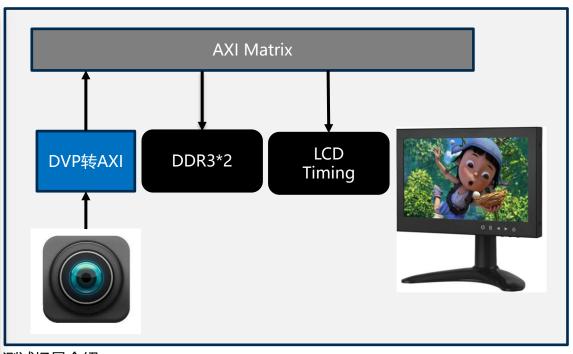
05 PART

更多图片展示


基于DDR3的HDMI 1080P显示Demo

测试场景介绍:

DDR3:800MHz (2颗)HDMI输出: LVDS模拟1920*1080@60输出图像



基于SC130GS/SC2210的实时HDMI 720P/1080P60显示

测试场景介绍:

1) SC130GS: 1280*720@60黑白全局曝光相机 2) SC2210: 1920*1080@60彩色卷帘曝光相机 3) DDR3+HDMI: AXI总线+720P/1080P RGB输出

深圳奥唯思,为FPGA图像而生......

奥唯思 官方公众号

官方网站: <u>www.szovs.com</u> (资料下载)

官方淘宝: szovs.taobao.com

"奥唯思FPGA" 店铺

FPGA论坛: www.crazyfpga.com

FPGA交流群: <u>851598171</u> (QQ)